Please enable JavaScript to view this site.

Allowed syntax

There are Excel functions with identical names (except Normal distribution functions, which are normsdist and normsinv) and behavior.

Function

Explanation

Excel equivalent

abs(k)

Absolute value.

abs(k)

arccos(k)

Arccosine. Result is in radians.

acos(k)

arccosh(k)

Hyperbolic arc cosine.

acosh(k)

arcsin(k)

Arcsine. Result is in radians.

asin(k)

arcsinh(k)

Hyperbolic arcsin. Result in radians.

asinh(k)

arctan(k)

Arctangent. Result is in radians.

atan(k)

arctanh(k)

Hyperbolic tangent. K is in radians.

atanh(k)

arctan2(x,y)

Arctangent of y/x. Result is in radians.

atan2(x,y)

besselj(n,x)

Integer Order J Bessel,  N=0,±1, ±2…

besselj(x,n)

bessely(n,x)

Integer Order Y Bessel,  N=0,±1, ±2…

bessely(x,n)

besseli(n,x)

Integer Order I Modified Bessel,  N=0,±1, ±2…

besseli(x,n)

besselk(n,x)

Integer Order K Modified Bessel,  N=0,±1, ±2…

besselk(x,n)

beta(j,k)

Beta function.

exp(gammaln(j)
+gammaln(k) -
gammaln(j+k))

binomial(k,n,p)

Binomial. Probability of k or more “successes” in n trials, when each trial has a probability p of “success”.

1 - binomdist(k,n,p,true) + binomdist(k,n,p,false)

chidist(x2,v)

P value for chi square equals x2 with v degrees of freedom.

chidist(x2,v)

chiinv(p,v)

Chi-square value for specified P value with v degrees of freedom.

chiinv(p,v)

ceil(k)

Nearest integer not smaller than k. Ceil (2.5)=3.0. Ceil(-2.5)=-2.0

(no equivalent)

cos(k)

Cosine. K is in radians.

cos(k)

cosh(k)

Hyperbolic cosine. K is in radians.

cosh(k)

deg(k)

Converts k radians to degrees.

degrees(k)

erf(k)

Error function.

2*normsdist(k*sqrt(2))-1

erfc(k)

Error function, complement.

2-2*normsdist(k*sqrt(2))

exp(k)

e to the kth power.

exp(k)

floor(k)

Next integer below k.
Floor(2.5)=2.0.
Floor(-2.5)=-3.0.

(no equivalent)

fdist(f,v1,v2)

P value for F distribution with v1 degrees of freedom in the numerator and v2 in the denominator.

fdist(f,v1,v2)

finv(p,v1,v2)

F ratio corresponding to P value p with v1 and v2 degrees of freedom.

finv(p,v1,v2)

gamma(k)

Gamma function.

exp(gammaln(k))

gammaln(k)

Natural log of gamma function.

gammaln(k)

hypgeometricm(a,b,x)        

Hypergeometric M.

(no equivalent)

hypgeometricu(a,b,x)

Hypergeometric U.

(no equivalent)

hypgeometricf(a,b,c,x)

Hypergeometric F.

(no equivalent)

ibeta(j,k,m)

Incomplete beta.

(no equivalent)

if(condition, j, k)

If the condition is true, then the result is j. Otherwise the result is k. See details.

(similar in excel)

igamma(j,k)

Incomplete gamma.

gammadist(k, j, 1,TRUE)

igammac(j,k)

Incomplete gamma, complement.

1 - gammadist(k, j, 1,TRUE)

int(k)

Truncate fraction.

INT(3.5)=3

INT(-2.3) = -2

trunc()

ln(k)

Natural logarithm.

ln(k)

log(k)

Log base 10.

log10(k)

max(j,k)

Maximum of two values.

max(j,k)

min(j,k)

Minimum of two values.

min(j,k)

j mod k

The remainder (modulus) after dividing j by k.

mod(j,k)

normdist(x,m,sd)

P value (one-tailed) corresponding to specified value of x. Normal (Gaussian) distribution with mean equal to m and standard deviation equal to sd

norm.dist(x,m,sd,TRUE)

norminv(p,m,sd)

Quantile (inverse cumulative distribution function) corresponding to one-tail P value p for the normal (Gaussian) distribution with mean equal to m and standard deviation equal to sd

norm.inv(p,m,sd)

psi(k)

Psi (digamma) function. Derivative of the gamma function.

(no equivalent)

rad(k)

Converts k degrees to radians.

radians(k)

round(k,j)

Round the number k to show j digits after the decimal.

round(k,j)

sgn(k)

Sign of k.

If k>0, sgn(k)=1.

If k<0, sgn(k)= -1.

If k=0, sgn(k)=0.

sign(k)

sin(k)

Sine. K is in radians.

sin(k)

sinh(k)

Hyperbolic sine. K is in radians.

sinh(k)

sqr(k)

Square.

k*k

sqrt(k)

Square root.

sqrt(k)

tan(k)

Tangent. K is in radians.

tan(k)

tanh(k)

Hyperbolic tangent. K is n radians.

tanh(k)

tdist(t,v)

P value (one-tailed) corresponding to specified value of t with v degrees of freedom. T distribution.

tdist(t,v,1)

t.dist(t,v,true)

tinv(p,v)

t ratio corresponding to two-tail P value p with v degrees of freedom.

tinv(p,v)

zdist(z)

P value (one-tailed) corresponding to specified value of z. Gaussian distribution.

normsdist(z)

norm.s.dist(z,true)

zinv(p)

Z ratio corresponding to one-tail P value

normsinv

© 1995-2019 GraphPad Software, LLC. All rights reserved.