Prism uses a standard method to compute the standard error and confidence interval for each parameter fit with nonlinear regression.
Each parameter's standard error is computed using this equation:
SE(Pi) = sqrt[ (SS/DF) * Cov(i,i) ]
where:
Pi : i-th adjustable(non-constant) parameter
SS : sum of squared residuals
DF : degrees of freedom (the number of data points minus number of parameters fit by regression)
Cov(i,i) : i-th diagonal element of covariance matrix
sqrt() : square root